SEARCH FOR HYPERDEFORMATION IN Xe NUCLEI

C. Rønn Hansen^a, G. B. Hagemann^a, B. Herskind^a, D. R. Jensen^a, G. Sletten^a, J. N. Wilson^a, S. W. Ødegård^{a,b}, P. Bringel^c, C. Engelhardt^c H. Hübel^c, A. Neusser^c, A. K. Singh^c, G. Benzoni^d, A. Bracco^d, F. Camera^d S. Leoni^d, A. Maj^e, P. Bednarczyk^f, T. Byrski^f, D. Curien^f, A. Korichi^g, J. Roccaz^g, J. Lisle^h, T. Steinhardtⁱ, O. Thelenⁱ, M. P. Carpenter^j, R. V. F. Janssens^j, T. L. Khoo^j, T. Lauritsen^j, R. M. Clark^k, P. Fallon^k

a The Niels Bohr Institute, Copenhagen, Denmark

b Dept. of Physics, Univ. of Oslo, Norway

c ISKP, University of Bonn, Germany

d Dipartemento di Fisica and INFN, Sezione di Milano, Milano, Italy

e Niewodniczanski Institute of Nuclear Physics, Krakow, Poland

f IReS, Strasbourg, France g CSNSM, Orsay, France

h University of Manchester, UK

Institut für Kernphysik, Universität zu Köln, Germany

j Argonne National Laboratory, Argonne, USA

k Lawrence Berkeley National Laboratory, Berkeley, USA

Two experiments aiming at the identification of hyperdeformed states in Xe nuclei have been performed, first using the Euroball array with its inner BGO-ball and recently Gammasphere where a five times larger data-set using the Atlas accelerator was obtained. The reaction $^{82}\mathrm{Se}(^{48}\mathrm{Ca.xn})^{130-xn}\mathrm{Xe}$ with 195 MeV and 205 MeV bombarding energy, respectively was used. Calculated fission barriers indicate that the compound nucleus is likely to survive fission up to $I = 90\hbar$ and thereby open the possibility to populate hyperdeformed (HD) states at the highest spin in the coldest residual nucleus, ¹²⁶Xe. The ultimate cranker calculations (UC) predict a pronounced minimum at $\epsilon \sim 0.9$ with axial symmetry at spins beyond $65\hbar$ in this nucleus. No discrete HD band has been identified in searches on the first dataset, but a ridge structure of $4 \hbar^2/J^2 \approx 48 \text{ keV}$ was observed [1]. This consists of more than 7 rotational bands with ≈ 5 transitions in each using both "Rotational Plane Mapping" and the "Fluctuation Analysis" techniques. Also a bump of collective transitions is observed to terminate at an average energy of 2 MeV typical of Jacobi transitions observed in other nuclei[2]. Nevertheless, the most conspicuous feature in the analysis of discrete transitions in 126 Xe is 4 bands extending from about $20\hbar$ to a maximum above 50 \hbar by cascades of transitions with energies extending to 2.5 MeV. A ΔE_{γ} of $\sim 100\text{-}120 \text{ keV}$ throughout these bands indicate a moderate deformation and may be related to a UC minimum observed at ϵ $\sim 0.34, \gamma \sim 0^{\circ}$. An analysis using a filter [3] from 13 transitions of the lowest lying band extending to $I = 52\hbar$, combined with a stepwise condition on the folds of the BGO-ball shows a pronounced bump of feeding transitions with energies in 1.9-2.0 MeV (i.e. considerably lower than the band energies) at the highest folds, also indicating a connection to strongly deformed states in the Jacobi transition region. The new discrete structures may provide a bridge to the regions of extreme deformation. The data from the recent experiment using Gammasphere, presently under analysis, will shed more light on these issues.

- [1] B. Herskind et al. Acta Physica Polonica, B34, 2767 (2003)
- [2] D. Ward, R.M. Diamond et al., Phys. Rev. C 66, (2002) 024317
- [3] J.N. Wilson and B. Herskind, NIM A 455, 612 (2000)